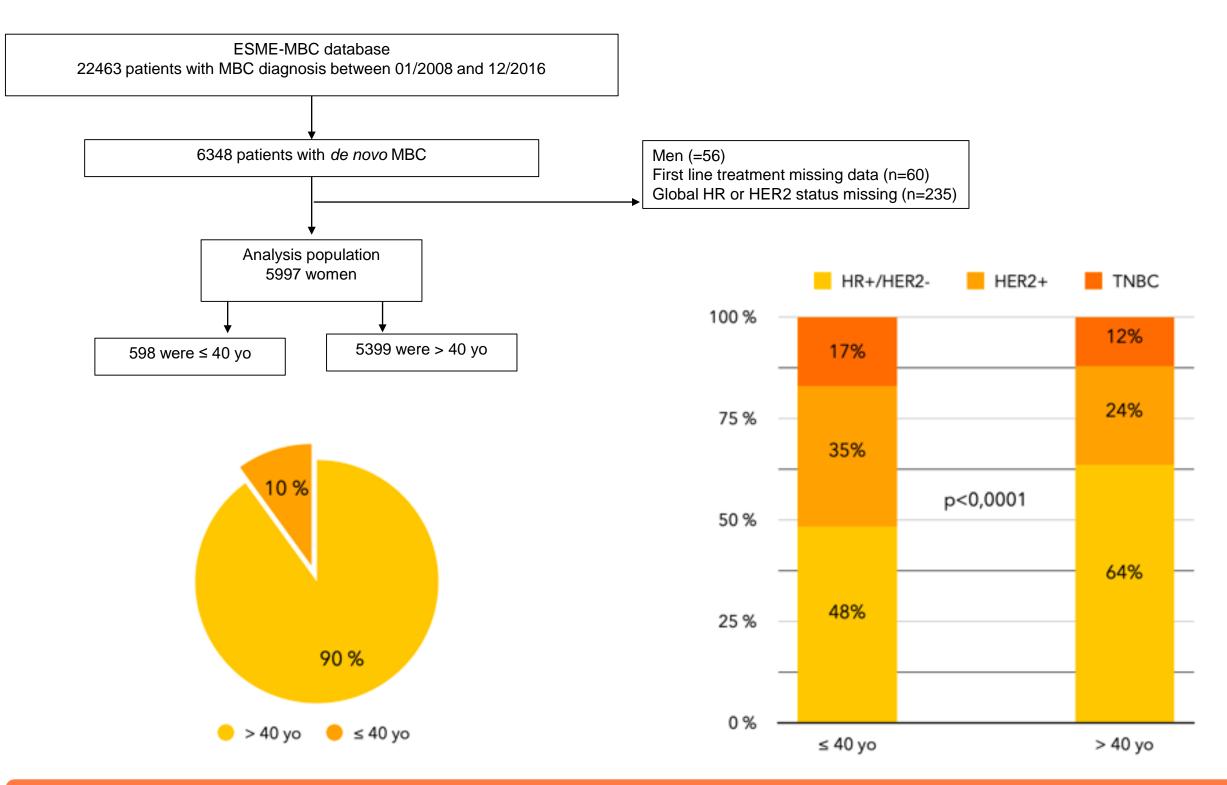


Real-life management and prognosis of young women (≤40 yo) with de novo metastatic breast cancer in the multicenter national observational ESME program

A. François¹, A. Lusque², C. Levy³, B.Pistili⁴, E. Brain⁵, D. Pasquier⁶, M. Debled⁷, JC.Thery⁸, A. Gonçalves⁹, I. Desmoulins¹⁰, T. De La Motte Rouge¹¹, C.Faure¹², J-M. Ferrero¹³, J-C. Eymard¹⁴, M-A. Mouret-Reynier¹⁵, T. Petit¹⁶, O. Payen¹⁷, L. Uwer¹⁸, S.Guiu¹⁹, J-S. Frenel¹


Introduction

Young women with breast cancer (BC), deserve a specific approach given peculiar issues including fertility, genetics and psychosocial concerns. *De novo* metastatic BC (MBC) in young women is a dramatic situation for which limited data are available.

Patients and methods

ESME is a unique French national multicenter cohort, collecting retrospectively data using clinical trial-like methodology. Using the ESME Data Platform, we evaluated the management and outcomes of women ≤ 40 yo diagnosed with *de novo* MBC. We compared the overall survival (OS) between young women and women > 40yo, adjusted on main prognostic factors, globally and among the three major MBC subtypes.

Population disposition and distribution

Acknowledgements / Funding

We thank all patients, participating centers and ESME Research Program funding sources (Roche, Pfizer, AstraZeneca, MSD, Eisai and Daiichi Sankyo).

Results

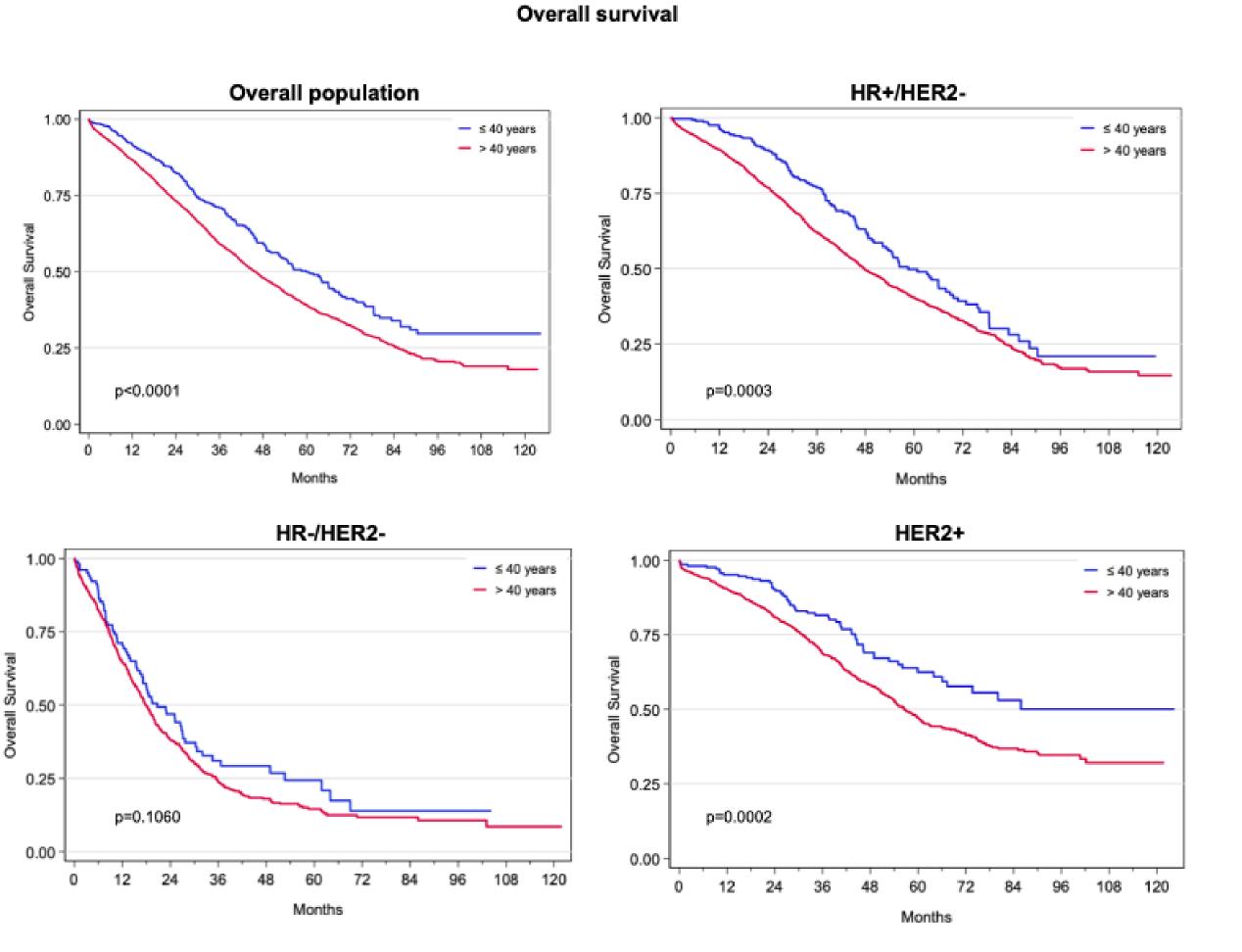


Figure 1 : Kaplan-Meier curves of overall survival (OS) in the whole cohort of patients and in each tumor subtype group by age at diagnosis

Variable	Overall population		HR+/HER2-		HER2+		HR-/HER2-	
	HR (95% CI)	p value	HR (95% CI)	p value	HR (95% CI)	p value	HR (95% CI)	p value
Age at diagnosis								
≤40 y	referent	_	referent	_	referent	_	referent	_
>40 y	1.41 (1.23-1.62)	<0.0001	1.43 (1.18-1.74)	0.0003	1.60 (1.21-2.11)	0.0010	1.14 (0.86-1.50)	0.3617
Grade III								
No	referent	_	referent	_	referent	_	referent	_
Yes	1.14 (1.05-1.24)	0.0018	1.20 (1.07-1.34)	0.0012	1.08 (0.91-1.29)	0.3719	1.03 (0.85-1.24)	0.7639
Number of metastatic sites								
< 3	referent	_	referent	_	referent	_	referent	_
≥3	1.80 (1.63-1.99)	<0.0001	1.53 (1.34-1.74)	<0.0001	1.89 (1.54-2.33)	<0.0001	2.66 (2.11-3.36)	<0.0001
Type of metastases								
Visceral	referent	_	referent	_	referent	_	referent	_
Non visceral	0.77 (0.70-0.84)	<0.0001	0.70 (0.62-0.78)	<0.0001	0.77 (0.62-0.95)	0.0151	0.87 (0.71-1.07)	0.1871
Global subtype IHC								
HR+/HER2-	Referent	_		_	_	_	-	_
HR-/HER2-	2.79 (2.50-3.12)	< 0.0001		_	_	_	-	_
HER2+	0.67 (0.61-0.75)	< 0.0001		_	_	_	-	_
Global HR status								
Négative	_	_	_	_	referent	_	_	_
Positive	_	_			0.78 (0.65-0.93)	0.0053		_

Table 1 :Multivariable cox model analysis of overall survival among subtype group

Population		≤4	40 y		> 40 y				
	N (%)	median OS months (95% CI)	median PFS1 months (95% CI)	5-year OS rate % (95% CI)	N (%)	median OS months (95% CI)	median PFS1 months (95% CI)	5-year OS rate % (95% CI)	
Overall population	598 (100%)	59.9 (52.7-66.1)	14.8 (13.3-17.0)	49.8 (44.6-54.9)	5399 (100%)	45.9 (43.9-47.5)	13.5 (12.9-14.0)	39 (37.3-40.7)	
HR+/HER2-	289 (48.3%)	58.5 (52.2-68.9)	14.2 (12.8-16.7)	49.8 (42.0-57.0)	3430 (63.5%)	47.6 (46.1-50.2)	14.6 (14.0-15.3)	40.4 (38.3-42.6)	
HER2+	207 (34.6%)	not reached	20 (16.3-24.2)	62.5 (53.3-70.3)	1314 (24.3%)	56.5 (53.6-60.6)	16.6 (14.7-17.9)	47.1 (43.4-50.6)	
HR-/HER2-	102 (17.1%)	20.7 (16.9-27.1)	7.8 (5.5-11.3)	24.4 (14.7-35.3)	655 (12.1%)	17.7(16.5-19.6)	6.4 (5.7-7.2)	14.6 (11.3-18.4)	

Table 2 : Median OS, median PFS1 and 5-year OS rates in the overall population and within tumor subtypes

After a median follow up of 48.2 months, young women with *de novo* MBC had a better OS compared to older women. In multivariable analyses, age ≤ 40y remained an independent favorable factor for OS in the whole population, in HR+/HER2- and in HER2+ population. To note, in HR+/HER2- patients, chemotherapy was selected as frontline treatment in the vast majority of young patients compared to older ones (89.6% versus 55.9% respectively, p<0.0001).

Conclusion

In this real-life setting, 10% patients with de novo MBC are ≤ 40 yo. Young women had a significantly better OS compared to older ones, except for the TNBC subgroup in which results were similar. Age driving first-line strategy with various effects on outcome according to phenotype, specific questions regarding treatment choice are still relevant and should be addressed prospectively.